
Extending editors
Changelist 1

Engines 2
Unreal 2

Editor Utility Widgets 2
Plugins 3
Custom Assets 4

Unity 5
Editor window 5
Inspector window 5
UIElements 6
Plugins 7

CryEngine 8
Editor window 8
Plugins 8

Amazon Lumberyard 9
Project menu 9
Gems 9

Godot 10
GDScript Tool Mode 10
Plugins 11
C++ Modules 11

Research Takeaways / Final thoughts 12
Game engines 12

More 12

Reference(s) 13

Changelist
Date Name Topics

17-09-2020 Jens Petter Research into how to extend
the Unity and Godot editor.

19-09-2020 Jens Petter Finishing research into how
to extend the editor in
Unreal.

20-09-2020 Jens Petter Finished the base of this
document by adding my
research into Amazon
Lumberyard, CryEngine and
adding my research
takeaways / final thoughts.

21-09-2020 Tim Rademaker Small changes to sentence
structure, phrasing and
grammar

1

Engines

Unreal

Editor Utility Widgets
Unreal works with widgets. This is how both in game and in editor UI is made. One can
create an editor utility widget using the option Editor Utilities -> Editor Widget. This widget
behaves the same as how a normal in game UI widget is constructed. It has the same UI
drag and drop functionality and also the same functionality such as creating on click events
for a button just like one can do with a “normal” in-game UI widget in Unreal.

A screenshot is found above from an Unreal Engine livestream where they showed how to use editor utility
widgets for this first time. Here they made a small level editor tool. Link to the source of this image here.

2

https://youtu.be/s_rt49atj0Y

Plugins
Unreal has the option to enable / disable plugins. There are built-in plugins but users can
also create a plugin themselves. This is done in C++. A plugin is more powerful than an
editor utility widget. One reason for this is that a plugin is a package that can be plugged into
any project and is more extendable than a one-file editor utility widget.

Unreal already made life a bit easy for a programmer who wants to make a plugin
themselves. There is a list of plugin templates developers can choose from. Plugins can be
seen as extending the editor, however there are also plugins that extend the UI of the editor.
I think this feature is very powerful in Unreal and I look forward to seeing what can be made
with this feature.

A screenshot showing a few of the example templates one can choose as a start for his / her plugin when he /
she wants to make a plugin. Link to the source of this image here.

3

https://youtu.be/mgFrFdzb7hg

Custom Assets
Developers have the possibility to create custom assets in Unreal. This requires some C++
code but one will have a struct-like blueprint that behaves as its own asset when this code is
constructed. Users can create their own custom asset through the editor like one would
create any other asset. Maybe the most important feature about creating your own asset is
that, in code, developers can specify what needs to happen to this asset at what time.
Developers can, for example, decide that certain things need to happen when the asset is
created where asset creation is a callback given to the user for when the user wants to
create a custom asset.

This option might not be directly seen as a method to extend the editor but this method does
allow the user of the Unreal engine to create new types of assets which I think is very
powerful. Because of this I see this method as a method to extend the editor.

A screenshot is found above where the person on this computer shows that his / her custom asset is visible in the
asset creation dropdown window. Link to the source of this image here.

4

http://www.cairansteverink.nl/cairansteverink/blog/writing-a-custom-asset-editor-for-unreal-engine-4-part-2/

Unity
There are several ways to extend the editor in Unity. One either writes a custom editor
window, a custom inspector window or uses UIElements to extend the editor. This is all done
in C#.

Editor window
An editor window is simply a new window inside the editor. One can then (in C#) decide what
this window is going to look like. This window can be made so it is accessible through the
application window bar.

An example of a custom editor window. Link to this image on the Unity documentation here.

Inspector window
An inspector window is the window users can see whenever selecting an object in Unity
where then in the inspector the information of that object (components etc) shows up. A
custom inspector can manipulate the data of this inspector window where the user can make
sure that something can happen programming-wise, for example based on a value change
in the inspector. Other elements like custom bars or buttons can be made in a custom editor
window. The beauty of this is that with custom code one can easily access and tweak
component values.

An example of a custom inspector window where in this case custom bars are made. Link to image on Google
here.

5

https://docs.unity3d.com/Manual/editor-EditorWindows.html
https://www.google.com/search?q=unity+custom+inspector+window&sxsrf=ALeKk03W6mpyMqzwgRxrkrGkly5mL01YBg:1600332472883&source=lnms&tbm=isch&sa=X&ved=2ahUKEwjl9MWE5-_rAhXDqqQKHWn5AT4Q_AUoAnoECA8QBA&biw=2560&bih=1298#imgrc=0Sjv3mL2fCghKM

UIElements
UIElements is a new feature of how to extend the editor in Unity that has been added to
Unity in 2019. One can extend the editor even further with the use of UIElements instead of
using a custom editor or inspector window. A construction of a UIElement needs 3 files
rather than 1 file when creating a custom editor or inspector window. An editor script, styles
script and template script are needed to create a UIElement window. The editor script is the
script one also needs for a custom editor or inspector window, the template file is a .uxml file
with all objects that exist in the UIElement and the styles file is a .uss where connections to
this .uxml objects and .uss file are made. Where in the .uss file the objects from the .uxml file
can be graphically modified. One can see this .uss file as a .css file.

A screenshot of a tool that was created using UIElements. Link to the source of this image here.

A screenshot of the UIElement debugger. Link to the source of this image here.

6

https://youtu.be/c_3DXBrH-Is
https://youtu.be/CZ39btQ0XlE

Plugins
Unity has the possibility to create native plug-ins and managed plug-ins. Users can add
functionality to the editor and to game code with plugins.

Unity has extensive support for native plug-ins, which are libraries of native code written in
C, C++, Objective-C, etc. Plug-ins allow game code (written in C#) to call functions from
these libraries. This feature allows Unity to integrate with middleware libraries or existing
C/C++ game code. In general, plug-ins in Unity are built with native code compilers on the
target platform. Since plug-in functions use a C-based call interface, one must avoid name
mangling issues when using C++ or Objective-C.

Managed plug-ins are managed .NET assemblies that one creates with tools like Visual
Studio. They contain only .NET code which means that they can’t access any features that
.NET libraries do not support. However, the standard .NET tools that Unity uses to compile
scripts can access the managed code. Therefore, there isn’t a lot of difference in usage
between managed plug-in code and Unity script code, except that plug-ins are compiled
outside of Unity and so the source might not be available.

7

CryEngine
One can see below that during my research I found 2 options on how one can extend the
editor in CryEngine. Documentation on this is very limited. I could find nothing other than the
CryEngine documentation on how to extend the editor in this engine which means that close
to no one has tried extending the editor and put their finding of that online. I tried to do this
myself in CryEngine, but Visual Studio 2019 (the version I use) is not supported. The most
up to date version of Visual Studio that is supported is Visual Studio 2015 which I think is a
shame.

Editor window
One can create an editor window in CryEngine. This is done in C++. Documentation on how
to do this is however very limited. The documentation (link in the reference(s) page of this
document) shows which class one should inherit from to make an editor window and what an
editor window can be used for, but that is sadly the extent of the documentation for that.

Plugins
The CryEngine plugin system exposes support for creating plugins in both C++ and C# and
allows users to simply drop a plugin into their project and to see the benefits instantaneously.
The Plugin system, according to the documentation, is still in beta. It also concerns me that
the plugin system documentation of CryEngine is also very limited.

8

Amazon Lumberyard
The documentation of Amazon Lumberyard doesn’t mention directly how to extend the editor
anywhere. However there are ways to do this. Amazon Lumberyard does give the user
access to its source code which can be pretty powerful for a tools programmer to extend the
engine with.

Project menu
One can easily add menu items that perform different functionality by simply adding that
custom code to the existing code of the editor. The fact that one simply adds code to the
existing code of Amazon Lumberyard in order to make their custom functionality work
concerns me a bit since because of this there is no clear separation between existing engine
code and modified engine code, although I have to say that Unreal has this as well where
one has access to the source code which sometimes can come in handy.

Amazon Lumberyard is c++ based which is why adding a project menu is also done in c++.

A screenshot of a tutorial I followed to add a custom button to the project menu toolbar. Link to the source of this
image here.

Gems
The modular gems system is a management infrastructure for sharing code and art assets
between Lumberyard game projects. The modular gems system consists of gem packages
that you can access and manage with the Project Configurator or Lmbr.exe. You can use
gems to add functionality such as code, art, scripts, supporting files, and references to other
gems to your game project. Gems seem to be the one main feature of Amazon Lumberyard
to extend the editor with since it claims that basically anything can be achieved with the
gems system.

The gems system can also be seen as modules. It can easily be taken in and out of any
project and code for gems is written in C++.

9

https://blog.thirdkindgames.com/amazon-lumberyard-tutorials/adding-project-menu-lumberyard-editor/

Godot
Godot also has a few different ways of letting the user extend Godot. 2 of the 3 methods that
I will talk about below here are written in GDScript. GDScript is a high-level, dynamically
typed programming language used to create content. It uses a syntax similar to Python.

GDScript Tool Mode
This method is the simplest way of extending the Godot editor. This method can be applied
to any script. A simple ‘tool’ keyword at the top of the script is needed to make sure the script
does not only run in game mode but also in editor mode. One has to attach this script to an
object in the scene in order to make such a script run in the Godot engine. Certain callback
functions from the engine (setting color, getting value etc), basic Godot script functions
(OnReady etc), Coroutines, signals and more can be used in a script that is in ‘tool’ mode.

An example of how a ‘tool’ mode script can look like in GDScript. In this script whenever the enemies color
property is changed the sprite is updated to match the new color. Link to the source of this image here.

10

https://dev.to/winstonyallow/godot-engine-extendable-editor-5cc3

Plugins
Plugins are much more powerful than the GDScript Tool Mode method. Plugins are executed
when the editor starts and the plugin is enabled. They are not part of Godot scenes, instead
they run independently inside the editor. Often plugins are used for making custom UI
windows inside the engine but also things like an importer / exporter for a specific file type
can be achieved by using plugins.

Screenshot of a custom asset tool that someone made in Godot in order for him to create levels faster. Link to
the source of this image here.

C++ Modules
Custom C++ modules can be imported in the Godot engine. This feature is extremely
powerful since a lot can be achieved with C++ modules. One can also access engine or
object related data, even extending this data. C++ runs faster than GDScript as well.

11

https://youtu.be/ovaSj38j5Vw

Research Takeaways / Final thoughts

Game engines
- Godot, Unity and Unreal are the 3 engines that have the most possibilities to extend

their engine. Unity definitely wins out of these 3 engines, since it can do everything
Unreal (except for custom assets) and Godot can but also can have a custom CSS
editor for their tools which is very cool and powerful I think.

- The creation of custom assets is I think one of the most important features of Unreal
when it comes to extending the editor.

- The fact that the same widget system in Unreal for making in-game UI and custom
editor windows is very neat and nice I think.

More
- CryEngine doesn’t support Visual Studio 2017 and 2019.
- Amazon Lumberyard is based on CryEngine.
- The documentation of Amazon Lumberyard is very limited.

12

Reference(s)

Unreal
- Creating Editor Utility Widgets | Inside Unreal (link)
- CREATING AN EDITOR MODULE IN UNREAL ENGINE 4 (link)
- WRITING A CUSTOM ASSET EDITOR FOR UNREAL ENGINE 4 - PART 2 (link)
- SAVE TIME PROGRAMMING - Unreal Engine 4 Plugins (link)
- Customizing the editor's toolbar buttons menu via custom plugin (link)
- Unreal Engine C++ Tutorial: Plugins (link)

Unity
- How to make an EDITOR WINDOW in Unity (link)
- How to make a CUSTOM INSPECTOR in Unity (link)
- Editor Windows (link)
- Custom Editors (link)
- Customize the Unity Editor with UIElements! (link)
- UIElements Developer Guide (link)
- Easy Editor Windows in Unity with Serialized Properties (link)
- Native plug-ins (link)
- Managed plug-ins (link)

CryEngine
- Creating a new editor window (link)
- Sandbox C++ plugins (link)
- Sandbox Python Plugins (link)
- CEditorWidget base class on GitHub (link)

Amazon Lumberyard
- Adding A Project Menu To The Lumberyard Editor (link)
- Add modular features and assets with Gems (link)
- How to Create & Enable Gems in Amazon Lumberyard | Lumberyard Tutorial

2019.19 (link)
- Gems Available in Lumberyard (link)

Godot
- Godot Engine: Extendable Editor (link)
- Tool mode in GDscript (link)
- Making plugins (link)
- Godot 3 Tutorial | Custom Modules with C++ (Inspired from Godot Docs) (link)
- Custom modules in C++ (link)

13

https://youtu.be/s_rt49atj0Y
http://cairansteverink.nl/cairansteverink/blog/creating-an-editor-module-in-unreal-engine-4/
http://www.cairansteverink.nl/cairansteverink/blog/writing-a-custom-asset-editor-for-unreal-engine-4-part-2/
https://youtu.be/nzjmQKLK1Xs
https://answers.unrealengine.com/questions/25609/customizing-the-editors-toolbar-buttons-menu-via-c.html
https://youtu.be/mgFrFdzb7hg
https://youtu.be/491TSNwXTIg
https://youtu.be/RInUu1_8aGw
https://docs.unity3d.com/Manual/editor-EditorWindows.html
https://docs.unity3d.com/Manual/editor-CustomEditors.html
https://youtu.be/CZ39btQ0XlE
https://docs.unity3d.com/Manual/UIElements.html
https://youtu.be/c_3DXBrH-Is
https://docs.unity3d.com/Manual/NativePlugins.html
https://docs.unity3d.com/Manual/UsingDLL.html
https://docs.cryengine.com/display/CEPROG/Creating+a+new+editor+window
https://docs.cryengine.com/pages/viewpage.action?pageId=26873092
https://docs.cryengine.com/display/CEPROG/Sandbox+Python+Plugins
https://github.com/CRYTEK/CRYENGINE/blob/846c245d9dd3f118d08cdcef821d7471cfc73d95/Code/Sandbox/Plugins/EditorCommon/EditorFramework/Editor.h#L29
https://blog.thirdkindgames.com/amazon-lumberyard-tutorials/adding-project-menu-lumberyard-editor/
https://docs.aws.amazon.com/lumberyard/latest/userguide/gems-system-gems.html
https://youtu.be/OQh8prkblz8
https://docs.aws.amazon.com/lumberyard/latest/userguide/gems-system-ref.html
https://dev.to/winstonyallow/godot-engine-extendable-editor-5cc3
https://www.javatpoint.com/godot-tool-mode-in-gdscript
https://docs.godotengine.org/en/stable/tutorials/plugins/editor/making_plugins.html
https://youtu.be/LFtNGsjM8Js
https://docs.godotengine.org/en/stable/development/cpp/custom_modules_in_cpp.html

